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On an OSp(l,4) renormalisable theory of supergravity 
with higher derivatives 
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International Centre for Theoretical Physics, Trieste, Italy 

Received 16 January 1979, in final form 25 April 1979 

Abstract. We present a supergravity Lagrangian invariant under local orthosymplectic and 
general coordinate transformations. It is conjectured that the Lagrangian describes a 
renormalisable theory. New features in this formulation are the introduction of a group- 
invariant metric tensor and the corresponding connection. As in other higher-derivative 
theories metric ghosts are present. 

1. Introduction 

The formulation and development of supergravity theories in recent years has pro- 
ceeded mainly along two distinct channels. The first is the geometrised, superspace 
approach (Brink et a1 1978, Wess and Zumino 1978, Akulov et a1 1975, Arnowitt and 
Nath 1978). The second is PoincarC supergravity (Freedman et a1 1976, Deser and 
Zumino 1976), in which the Einstein action was coupled minimally to a spin-; 
Rarita-Schwinger field and the field transformations that leave the supergravity action 
invariant were obtained iteratively. Until recently (Stelle and West 1978, Ferrara and 
van Nieuwenhuizen 1978), the supersymmetric gauge algebra of PoincarC supergravity 
could be made to close only on-shell, a defect which led to the invention of the graded 
algebraic approach (Chamseddine and West 1978, MacDowell and Mansouri 1977). In 
this framework, which is a direct application of the gauge method to supersymmetry, 
the underlying group-theoretic structure is made manifest throughout. 

The SL(2, C) internal symmetry of Weyl (which on gauging gives rise to a spin-2 
gauge field) is replaced by the orthosymplectic symmetry OSp(l ,4) .  Gauging this 
supergroup leads to a theory of coupled spin-2 and spin$ fields. As in the case of the 
Weyl SL(2,C) symmetry, general covariance is not mandatory but may be imposed as a 
further symmetry of the theory, distinct from the invariance under graded OSp(l ,4) .  
Constraints and a Wigner-Inonu contraction are then required to reproduce the action 
of PoincarC supergravity. 

The maximal Lie subgroup of the supergroup OSp( l ,4)  is Sp(4), the de Sitter 
covering group. Further, the homogeneous space OSp(l,4)/Sp(4) has four anti- 
commuting elements, parametrised by the four components of the Majorana spinor 8,. 
Since coordinate space X” in a de Sitter universe can be associated with Sp(4)/SL(2, C), 
the superspace (X” ,  e,) is simply the homogeneous space OSp(l,4)/SL(2, C). This 

f Supported in part by an Italian Government Fellowship. 

0305-4470/80/020713 + 12$01.00 0 1980 The Institute of Physics 713 



714 M A  Namazie 

constitutes the link between the graded algebraic and superspace approaches, and 
provides part of the motivation for a gauged OSp(l ,4)  theory of supergravity. 

A theory of massive supergravity based on a gauged orthosymplectic symmetry has 
been constructed recently (Chamseddine 1977,1978, Chamseddine et a1 1978, Giirsey 
and Marchildon 1978). In this formulation, the SL(2, C) gauge invariance of Einstein 
gravity is extended to a local OSp(l ,4)  symmetry. The Einstein group of general 
coordinate transformations GL (4, R), or more precisely (since this itself is broken) its 
O(3, 1) subgroup, is left intact. Then, by spontaneously breaking QSp(l ,4)  down to 
SL(2, C) and demanding that the vacuum be Poincark-invariant?, a mass for the spin-; 
gauge field is generated$ via the ‘super-Higgs’ effect (Chamseddine 1977, 1978, 
Cremmer et a1 1978). 

Two multiplets of fields are required. The gauge potentials transform under a 
fourteen-dimensional tensor representation of OSp( 1,4),  and a ‘super-Higgs’ multi- 
plet, necessary to induce spontaneous symmetry-breaking, belongs to a ten-dimen- 
sional representation. To restrict the final particle spectrum, non-linear realisations 
and covariant constraints are used to implement the symmetry breakdown, and to 
suppress the dynamical role of some of the fields. 

In this paper§, we construct a renormalisable, parity-conserving theory of super- 
gravity which is invariant under local OSp(l ,4)  and general coordinate trans- 
formations. This essentially constitutes the supersymmetric extension of R 2  and 
R&”R,, gravity (Stelle 1977)1( within the orthosymplectic framework. Although taking 
the vierbein and the Rarita-Schwinger field as the basic dynamical objects, it is 
nevertheless convenient to define a metric tensor which is invariant under the group 
actionq. 

Higher derivatives are included in the action, leading to propagators with a 
momentum-space high-energy behaviour of k-4. The one-loop divergences are 
thereby sufficiently softened for the theory to be renormalisable in the conventional 
sense. To this end, we find it necessary to define a generalised (Cartan) covariant 
derivative of the OSp(l ,4)  field strengths and to introduce a corresponding connection 
to preserve general coordinate invariance. 

The connection can be solved for in terms of the dynamical fields L,” and $,. This is 
done by using the standard constraint that the covariant derivative of the metric 
vanishes. 

One novel feature is that the higher derivatives injected into the theory cause the 
SL(2, C) gauge field BPab to propagate, unlike the situation in ordinary supergravity 
where it can be eliminated by an algebraic constraint equation. 

The theory considered here has in common with conformal supergravities the 
pathology of metric ghost states occurring in the particle spectrum, a point to which we 
shall briefly return in the conclusion. Apart from the question of ghosts, another 
interpretative difficulty arises from the propagation of the SL(2, C) gauge field. This 
evidently introduces further spin-2 components into the theory. It is conceivable that 

t In actuality, the vacuum transforms under the O(3 , l )  subgroup of O(3 , l )  xSL(2, C), the O(3, 1) in the 
direct product coming from the broken group of general coordinate transformations. 
i A cosmological term is also generated, which must be cancelled if the background is to be Minkowskian. 
I We adopt the conventions of Chamseddine (1977, 1978). 
11 However, unlike R2-gravity, the present theory, as will be seen, contains apropagating SL(2, C )  connection. 
Thus, too direct a comparison with the former may be misleading and is not intended. 
7 This is a departure from the purely geometric (affine) theory in which the metric does not explicitly appear 
except in the curvature tensor. 
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this latter problem may be removed by imposing a constraint on the OSp(l ,4)  curvature 
(field-strength), as is done in conformal supergravity. 

2. Gauged orthosymplectic symmetry 

The group OSp(l ,4)  is the set of linear transformations in the 4 0  1 space 

with infinitesimal transformations taking the form 

where w can be parametrised by the 5 x 5 matrix 

E is a Majorana spinor with E = CET and, provided it anticommutes with x, the real form 

xTc-'x + 6 2  = 4 2  - f x  

is left-invariant under the group action. 

representation and can be written as the 5 x 5 matrix 
The fourteen gauge fields are assigned to the antisymmetric rank-two tensor 

where *, is the spin-5 Rarita-Schwinger gauge field and W, is the Sp(4) gauge 
potential, 

w, = K-lL,aya 4- $BLQblCTQb. 

Here L," and BkQb1 are the vierbein and the SL(2, C )  connection respectively. In 
analogy with Yang-Mills theory, the OSp(l ,4)  field strengths are given by 

where 

under OSp( 1,4), and transforms as an antisymmetric covariant tensor under general 
coordinate transformations. 
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A covariant derivative of the field strength with respect to OSp(l ,4)  may be defined 
by 

V,@.,V = a p @ , v  +[a,,, @,,I 

+ a, w,$,, - (I/,$,) + ii[ w,, $JW -  cl& 1, - (2i w,, + 
%(a, w,, +ti[ w,, w.,,I) + $,I,(C4, - ~LJ,& 8, + 3i w,$.,, 

aP&, - ii$,,W, 
+ $, Cii w,, + $,$w - +,$,.I 

- $,,$, I$, I* 0 =I (6) 
Since the orthosymplectic symmetry is necessarily broken spontaneously (Cham- 

seddine 1978, Cremmer et a1 1978), Higgs-like fields must be introduced, and these are 
taken to transform under the ten-dimensional symmetric second-rank tensor 
representation of the group. Represented as a 5 X 5 matrix, 

where 

H=&(x)+P(x )Ys+  V ~ ( X ) ~ ' Y ~ Y S ,  

~ ( x )  is a pseudoscalar, ~ ( x )  a scalar, V, a vector and A, a Majorana spinor. C 
transforms as 

c -$ R(x)CR-'(x) (8) 

and is a world scalar. Its covariant derivative is a covariant vector 

v,c = a,c + [@,, C ]  

:i[L,, HI - $,x - A$,, V,A + $L,A + $,T - H$, 
= (cwH - V, +- h + iixL, - T$, + $,H, a , r  + $,A +A+, 

where 

V,H = a,H +;i[B,, HI, 

v,c -$ n(x)v,cn- '(x).  

V,A = a,A +iiB,A, 

and has the transformation 

The metric tensor is defined? to be the OSp(l ,4)  invariant 

g,, - Tr(V,CV,C), 

where g,, undergoes the usual general coordinate transformation 

(which, in analogy with general relativity, allows one to interpret it as the metric tensor). 

t A similar metric has been used by Baaklini (1977). 
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3. Spontaneous symmetry breaking and the Lagrangian 

In order for the theory to possess a stable, flat (PoincarC invariant) vacuum (LFa) = qNa, 
one requires the multiplet C to have a non-vanishing expectation value. This may be 
implemented$ by imposing two group-invariant constraint equations§ which reduce the 
number of independent components of C from ten to eight, which is the correct. number 
to parametrise the homogeneous space 0Sp(l74)/SL(2, C). Further, as mentioned 
above, using the gauge freedom afforded by the parameters ua, E,, one eliminates the 
fields Va and A ) \  so that the multiplet C assumes the form 

where a" is some constant. This then allows V,C to be written in the simple form 

by which relation it is defined in terms of the dynamical fields LWa and 4,. 
Before constructing a Lagrangian, the question of general coordinate invariance 

requires some discussion. As stated previously, one does not have to insist upon the 
coordinate invariance of the action but, in keeping with the spirit of general relativity, it 
certainly seems desirable. To this end, the covariant derivative, equations (6)  and (9),  

t From which it may be surmised that V,, A may be set to zero by a suitable choice of the parameters e, and 
U,. We shall in fact work in a gauge specified by this particular choice (designated the unitary gauge). After 
symmetry breaking, the residual SL(2, e) gauge freedom is eliminated by using the Lie parameter 0.b to 
make L,, symmetric. 
$ Alternatively, one may proceed along more conventional lines by minimising the Higgs potential (see 
Chamseddine 1977, 1978) to obtain the desired symmetry breaking. 
5 The group-invariant constraints, which Chamseddine (1978) takes to be Tr C2 = -46' and Tr C3 = 0, have 
a dynamical content with which we are not concerned here except to the extent that they allow P ( X )  and cp ( x )  
to be eliminated in favour of V,(x) and Am, which play the role of the 'preferred' fields of non-linear 
realisations (Chamseddine et a1 1978, Abdus Salam and Strathdee 1969, Zumino 1977). 
I /  Following Chamseddine (1977), one may show that the effect of the two constraint equations is to cause 
(SV,), (SA,) to acquire C-number displacements, which indicates the non-invariance of the vacuum and the 
role of V, and A, as Goldstone fields. 
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will have to be generalised as follows to take into account both the OSp(l ,4)  'internal 
symmetry' and general covariance. After the manner of a Cartan covariant derivative, 
we define 

gp@wu = v,@,, - I ~ ~ K , Q ~ ~  -rpKUolrK 

The generalised connection I'pK, is determined in terms of the dynamical fields by the 
condition that the covariant derivative of the metric tensor vanishes?: 

g & p A  = 9, Tr(V,CV,C) = 0, (18) 
which gives the following expression for the symmetric connection after inversion in the 
standard manner (the contragradient metric tensor g'lY is defined by gwvg,,A = 

r" ,A =1 2g P K  [(a,&," -a,,L,,")LA" + (~AL," -a,,L,A")L," + (il,L," +a,+L,")L," 

- ( Z f i p A  + J i h p & )  - ( Z w A p  +*App) + ( Z p f i A  + Z p A p ) l ,  

= -:[$A ( a p + p )  + (a&$,)+* + i1,pa$pYa+A +fiBwab$AhOhb+~Lp]* 

(19) 

(20) 

where the Majorana spinor terms, 2, are given by 

One is now in a position to write down OSp(l ,4)  and general coordinate invariant 
Lagrangians constructed from the metric tensor, the 'Higgs' multiplet C and the 
covariant derivatives of the field strengths. However, the crucial point is that, to secure 
renormalisability, the propagators of the theory should have a high-energy behaviour of 
at least k-4 (in analogy with ordinary R 2  gravity (Stelle 1977)). This of course means 
that at the linearised level h,, (where L,, = 7," + ~h,,,)$ should have kinetic terms 
containing minimally four derivatives. It turns out that this restriction eliminates 
candidates such as (a )  gpuEl.ruKA Tr[(V,C)(D,@,.)@.A] and ( b )  g p u ~ w v K A  Tr[C(D,@,,) 
(DO.QKA)]. This is clear from what follows. In case ( a ) ,  working in the unitary gauge in 
which V,C = iL,ys, partial integrations allow the Lagrangian to be written as 
g"'e"v'cA Tr[(D,y5Lp)@,,@KA]. In this form, it can easily be seen that the y structure 
causes all higher-derivative terms to vanish. The Lagrangian (b ) ,  although containing 
higher-derivative terms (which lead to a propagator high-energy behaviour of 
( T ( h h ) )  - kT4, (T(BB))  - kU4 arid (T(Bh))  - K3),  is not power-counting renormalis- 
able in the sense that not al! one-loop divergences can be absorbed into the original 
Lagrangian. One is thus led to a unique choice for the higher-derivative-containing 
piece of the Lagrangian. 

The proposed Lagrangian is 
pU K& AV LE== (gda") FVKA Tr(C@,u@"A)+gd-gg  g g Tr(%@KAgp@,v) 

f (g3/465)~CLvKA Tr(CV,CV,CV,CVAC) 

+ (g4/2d3)cWuKA Tr(CV,CV,C@KA) + a ?'r(aAd,@,aAJ,@,). (21) 
I Since the metric tensor is symmetric, equation (18) gives forty constraints and one may in addition demand 
that the connections riA so derived are symmetric a5 well, so that they give the same number of relations. Thus 
one has in fact a spin-containing connection which is torsionless (see footnote 2 of Kaku et al 1977). 
i: The symmetry breaking of OSp(l,4) implied by (&) = vWa allows the identification of Greek and Latin 
indices, providing the link between PoincarC transformations and the SL(2, @j index transformations. One 
may then interpret h,, as being the graviton field. 
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The first term (with dimensional coupling gl) contains (see Chamseddine 1977, 
1978) the usual Einstein supergravity action (with a cosmological term) coupled 
minimally to the spin-? field, with a mass-like term appearing for the Rarita-Schwinger 
field. 

There are four arbitrary dimensional coupling constants, g l ,  g 2 ,  g3 and g4,  in the 
theory to begin with. The constraints, that the Einstein part comes in with the correct 
factor (in terms of the Einstein constant K ) ,  and the vanishing of the cosmological term?, 
reduce the number of independent parameters to two. A further constraint is provided 
if one wants to adjust the mass of the spin-: gauge field independently (otherwise it is 
fixed at the order of the Planck mass). This leaves one independent coupling constant$. 

The gauge fixing term a Tr aAa,@,aha,,@, is included as usual to break the general 
coordinate invariance of the theory (the particular form chosen is for simplicity of the 
momentum-space propagators). 

4. The linearised theory 

We next examine the content of the theory at the linearised level. Since even the 
bilinear contribution is fairly complicated, we shall only consider the bosonic sector in 
the unitary gauge. Treating all fields (except L,,) h,,, BCLab, $, as perturbations, the 
bilinear terms are contained in the general expression 

where the coefficients a,  b, c, . . . , c4 are in general dimensional. T,,, and JPvh are 
sources coupled to h,, and B,,,A respectively. 

t The alternative is that one would have to quantise in a de Sitter universe if an effective cosmological term 
were allowed to remain after symmetry breaking. 
t This is to be contrasted with ordinary RZ gravity (Stelle 1977), where the action 4-g (K-’R + aRZ + 
/3R,J7 ””) has two independent (although not perhaps in the renormalisation-group sense, see Abdus Salam 
and Strathdee (1978)) couplings. The remaining free parameter in the present theory will presumably be 
necessary to adjust the higher-derivative induced corrections to the 1 / r  Newtonian potential in the classical 
limit (see Stelle 1977). 



720 M A  Namazie 

Contact with the Lagrangian equation (21) of 0 3 is made by the following 
identifications : 

r 2  g2 = g;K2, gi = g'1K2, g3 = g k 2 ,  g4= g k 2 ,  ( Y = ( Y K ,  

(where 8'1 to g& and a' are dimensionless) 

a = - 2 / ~  2 , b = 4 / ~ ~ ,  C = 11/K2, d = - 1 3 / K 2 ,  

e = -f = ( 6 /  K 4 X 1  -g;/g; - k i  +gk)/ghl, a l  = - b l =  2(2gi + g&)/g;K3, 

C l  = (2/K3)(9+2g;/g; +kk/g;), 

a3  = 4 / ~ ~ ,  

dl = -el = 6 / ~ ,  f l  = -a2 = 2 / ~ ,  

b3 = 6 / ~ ~ ,  c3 = d3 = 2 / ~ ~ ,  e3 = - f 3  = 1/K2, 

a4 = -(2g; + g & ) / g h 4 ,  b 4 =  -9/K4+2g;/g~K4+g&/g~K4,  C4=9/K4. 

At this linearised level, cancelling the cosmological term would mean setting 

To obtain an insight into the linearised higher-derivative Lagrangian, it may be 
e = f = 0, i.e. taking g; = g ;  + g i  + g&. 

written symbolically as 

+Bd4B + K - ~ B B ) .  (23) 
The salient new features are that the SL(2, C) connection gauge field grab now 

propagates and is coupled to the graviton field h,, by non-trivial mixing terms. From 
the point of view of renormalisability, the propagator high-energy behaviour is (again 
symbolically)? as follows: 

(T(hh)) - k-4, (T(BB)) - k-4, (T(hB)) - k-'. (24) 
An examination of the various one-particle irreducible divergent structures reveals 

this momentum-space behaviour to be sufficient to ensure renormalisability of the 
theory (at the one-loop level at least). 

The field h,, describes the usual massless spin-2 graviton, and in addition will have a 
massive spin-2 excitation (a metric ghost state) and a positive energy massive scalar 
(Stelle 1977). The twenty-four component (massive) field BI*.[ab~ has the spin 
decomposition$ 

B,[,,1=2+01'01-00'02-01-01'00- 

5. Conclusions 

The OSp( 1,4)  supersymmetric extension of the R 2 ,  R,,R fourth-order derivative 
action of ordinary gravity has been presented here. Central to this formulation is the 
idea of spontaneous symmetry-breaking implemented by group-invariant constraints 
which simplify the situation in that they allow the dynamical role of two of the 

i The exact form of the propagators has been obtained by a lengthy computer calculation. 
$ The particle spectrum of this theory may be compared with the bosonic sector spectrum of Ferrara et a1 
(1978). However, the propagating SL(2, e)  gauge field BFab in the present theory evidently introduces 
further spin-2, spin-1 and scalar components. 
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component fields to be suppressed. As has been shown by Chamseddine (1978) for the 
case of the Einstein part of the Lagrangian (21), equivalence with the conventional 
supergravity action can be achieved via a Wigner-Inonu group contraction. However, 
in the present context the propagating field BNab seems to obscure the relation between 
the present theory and its group-contracted PoincarC version. 

We close with some remarks about the negative norm states (ghosts) in the theory. 
Obviously any physical interpretation of such a theory is not possible unless the ghosts 
can be decoupled from the physical sector, in the sense of Abdus Salam and Strathdee 
(1978) and Julve and Tonin (1978) for instance. However, as stated by Babelon and 
Namazie (1978), in the case of supersymmetric theories, relations between the renor- 
malisation group functions may prove to be an obstacle to the Salam-Strathdee 
consistency condition for the elimination of ghosts being fulfilled. 
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Appendix 1 

In this appendix we outline the expansion of the Lagrangian equation (21) into its 
bilinear and higher-order components of its purely bosonic sector. The calculation is 
extremely lengthy and was in part performed by computer?. The closure of the Dirac y 
algebra enables one to write 

auwpv $( w, :;uYa + wp : ; f l a b )  (Al .  1) 

(A1.2) 

where 

w,: = LV?, -L,;v, 
B,:~ = i(a,B,"b - a,,BB,"b) + B ~ ; B , ~ ,  

LVia,  = a,L," - BfiaCL,C, 

with = $(Aa& - A d a ) ;  the Einstein constant K has been set to unity. 

(A1.6) 

(A1.7) 

(A1.8) 

f The symbolic manipulation programme 'SCHOONSCHIP' (Veltman 1967) was used; see also Strubbe 
(1974). 
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Also needed are the symmetric connection defined by equation (19) and the product 
JG gpugKfigAu, both to second order in the graviton field hwu. They are given by the 
expressions 

(A1.9) 

where 

The Einstein part of equation (21) is then given by 

(Al.11) 

(Al.  12) 

(A1.13) 

(Al.  14) 

(Al.  15) 

(A1.16) 

and the higher-derivative Lagrangian by$ 

T H i g h e r  Deri,vative, = - ( H p w ~ w A v  + M~UK~AV + @ p u ~ g A u )  
Bosonic, Bilinear 

x ( w , R ; U w w : : ; , + 2 W K ~ f U W ~ ~ , ) .  (A1.17) 

Our conventions are T , ~ ~  = diag( + - - -1, g a b  = zi[ya, Yb] and ( y #  = -1 I The 
density ellYKA is defined to be + 1 if ( p v ~ h )  is an even permutation of (0123), - 1 if 
( ~ v K A )  is an odd permutation of (0123), and zero otherwise; E ~ ” ~ ~ E ~ , , ~ ~  = -24. Also 

1 

det(Lwa) E ~ Y K A  = LfiaLu&CKcLAdcabcd- 

- 
t With *,=O, J-g=det(L,,) and gw” expanded to second order in hw” is given by g ” ” =  

$ Since at this stage a non-covariant decomposition has been made, there is no need to distinguish between 
upper and lower indices. 

~ w ” - 2 h w Y + 3 h l L n h Y n + . .  . . 
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